

Food Safety

Emerging Residues and Contaminants Control

9 May 2024

Dr. Thomas Gude

AOAC Europe Section

AOAC stands for:

ASSOCIATION OF OFFICIAL ANALYTICAL COLLABORATION (AOAC) INTERNATIONAL

Our Mission

 AOAC Europe brings together government, industry, and academia to establish standard methods of analysis that ensure the safety and integrity of foods and other products that impact public health around the world

Our Activities

- We are organizing regularly meetings together with other European Societies
- We are organizing workshops based on working group activities:
 - Q3 2024: Bioassay Harmonization
 - Q3 2024: Chemical Analysis Non-Target Methods
 Taking place in Nov 2024 in Prague as part of the RAFA Conference

The Future of Food Safety*

FOOD SAFETY IS FOOD SECURITY

 If it is not safe, it is not food. Food security is achieved when all people, at all times, have physical and economic access to food that meets their dietary needs for an active and healthy life.

FOOD SAFETY IS SCIENCE CENTRED

 Science-based decision-making increases public health and protects trade. Risk assessment provides policy makers with the information and evidence they need for effective and transparent decision-making, contributing to better food safety outcomes and improvements in public health.

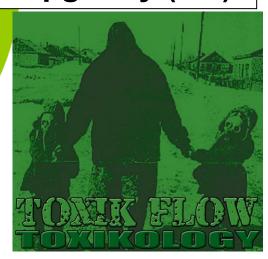
FOOD SAFETY REQUIRES SHARED SOLUTIONS

 Human health is closely interlinked with the health of animals and the environment around us.

FOOD SAFETY IN EMERGENCIES

 International emergency response systems ensure coordinated action when combatting outbreaks of foodborne illness globally.

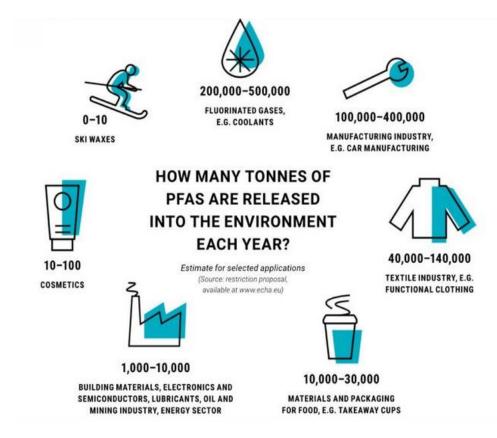
Risks from a Toxicological Point



Toxicological non-assessed (?)

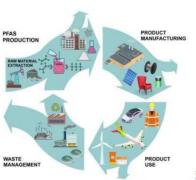
Food Process
Contaminants
50 µg/ Day (< 1%)

Pesticides 50 µg/ Day (1%)


Enviromental Chemicals 100 µg/ Day (2%)

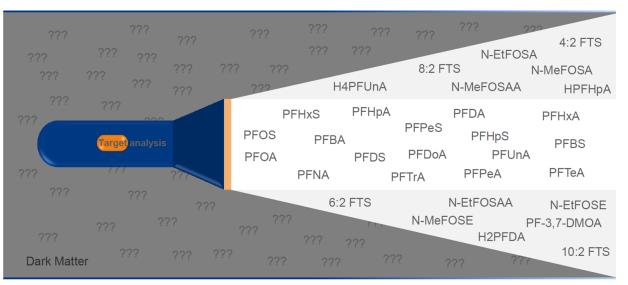
Lets Talk about PFAS

- Poly- and per-fluoroalkyl substances
 - Generic family of chemicals
 - Manmade and do not occur naturally
 - Used since 1940 (Critical for the Manhattan Project)
 - Can be branched or unbranched
 - Short chain or long chain
 - Used to make products that resist heat, oils, grease, stains, and water
- Most prevalent and researched: PFOA and PFOS


The Iceberg Know Who or What are PFAS?

• According to the OECD definition (2021), "per- and polyfluoroalkyl substances" (PFAS) are defined as fluorinated substances that contain at least one fully fluorinated methyl or methylene carbon atom (with no H/Cl/Br/l atom attached), meaning with few exceptions, any chemical with at least one perfluorinated methyl group (-CF 3) or one perfluorinated methylene group (-CF 2 -) is a PFAS."

 The "mentioned exceptions" refer to a carbon atom with an H/Cl/Br/l atom attached to it (Wang et al., 2021). **75 000 tons** of emissions in 2020


4.5 mio tons of emissions over 30 years

The Analytical Dilemma

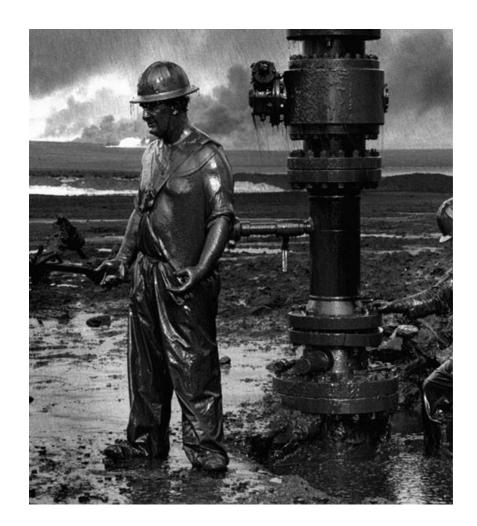
© Eurofins NDSC Food Testing Germany, 2021

Low number of PFAS.

Quantitative and high specificity

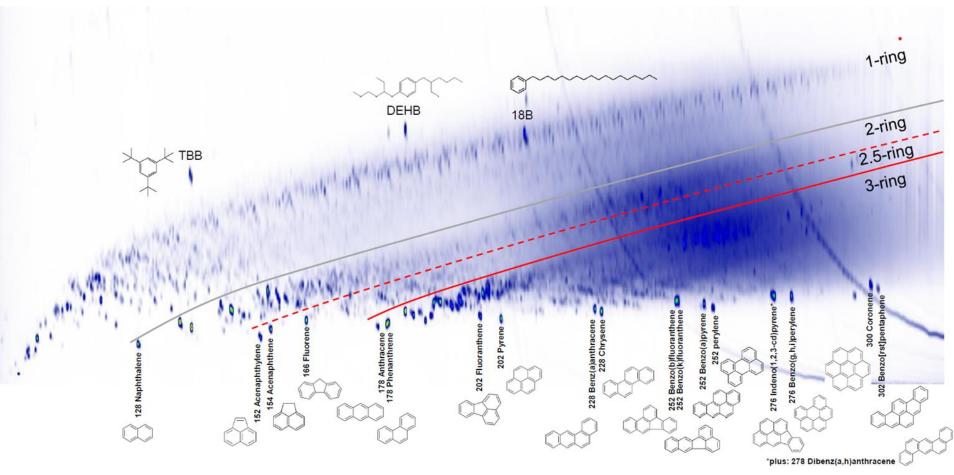
Large number of PFAS, screening studies.
Different levels of confidence

REGULATION (EU) 2022/2388 Maximum levels of PFAS in Food


Foo	odstuff	PFOS*	PFOA*	PFNA*	PFHxS*	Sum of PFOS*, PFOA*, PFNA* and PFHxS* (**)
Egg	gs	1,0 µg/kg	0,30 µg/kg	0,70 µg/kg	0,30 µg/kg	1,70 µg/kg
a) b) c)	Muscle meat of fish, group A ¹ see next slide for Muscle meat of fish, group C ¹ details	2,0 µg/kg 7,0 µg/kg 35,0 µg/kg	0,20 µg/kg 1,0 µg/kg 8,0 µg/kg	0,50 μg/kg 2,5 μg/kg 8,0 μg/kg	0,20 µg/kg 0,20 µg/kg 1,5 µg/kg	2,0 µg/kg 8,0 µg/kg 45,0 µg/kg
Crustaceans and bivalve molluscs		3,0 µg/kg	0,70 µg/kg	1,0 µg/kg	1,50 µg/kg	5,0 µg/kg
Mea a) b) c)	at and edible offal: Meat of bovine animals, pig and poultry Meat of sheep Offal of bovine animals, sheep, pig and poultry	0,30 µg/kg 1,0 µg/kg 6,0 µg/kg	0,80 µg/kg 0,20 µg/kg 0,70 µg/kg	0,20 µg/kg 0,20 µg/kg 0,40 µg/kg	0,20 µg/kg 0,20 µg/kg 0,50 µg/kg	1,30 µg/kg 1,6 µg/kg 8,0 µg/kg
d) e)	Meat of game animals (not bear meat) Offal of game animals (not bear offal)	5,0 µg/kg 50 µg/kg	3,50 µg/kg 25 µg/kg	1,50 µg/kg 45 µg/kg	0,60 µg/kg 3,0 µg/kg	9,0 µg/kg 50 µg/kg

^{*} Sum of linear and branched stereoisomers, ** Lower-bound concentrations

Let's Talk About Mineral Oil


- The European Food Safety
 Authority (EFSA) has published
 an updated risk assessment on
 mineral oil residues in food.
- According to current knowledge, there are no health concerns regarding the amount of saturated mineral oil hydrocarbons (MOSH) consumed in food.
- However, the EFSA still believes that the intake of aromatic mineral oil hydrocarbons (MOAH) is too high, especially for infants and young children.
- Separation between 1-2 ring and 3-7 ring systems?

Analytical Challenge

mixture of mineral oil fractions (crude, DAE, waxes) + 16 EPA PAHs + individual components, MOAH LC fraction, GC column set: mid-polar-apolar

Taken from M. Biedermann

3rd International Akademie Fresenius Online Conference "Residues of Mineral Oil and Synthetic Hydrocarbons in Food" - 25 and 26 January 2024

Non-Intentionally Added Substances (NIAS) – The Box of Pandora

Listed Substances

In the EU specifically covered Substances

In the EU controlled Substances

Food Contact Materials (FCM)

Size of EU industry:

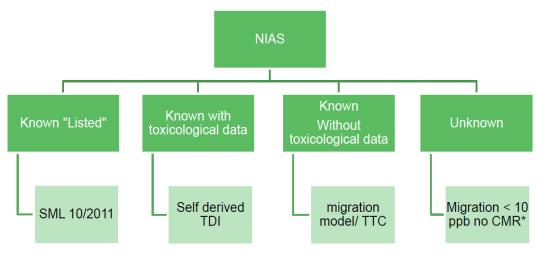
~€100 billion/ annum

Plastics €30 bn

Paper €25 bn Glass €20 bn Other €18 bn

Metal €7 bn

What toxicological limit must be reached?



Analytical detection limit

- So far: threshold given by analytical possibility
 - Idea: No evidence necessary below the detection limit because it cannot be verified
 - Detection limit of 0.01 mg/kg set in the EU
- Present/future
 - LoDs can/must be reduced below the toxicological relevance

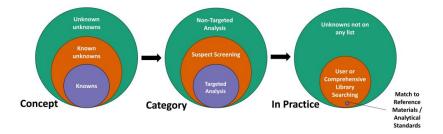
High Degree of Purity (Article 3a- Draft to Reg 10/2011)

they are unknown or have not been subject to an assessment specified in points (ii) or (iii) but are present at a level in the plastic material or article that, assuming their full migration into food, cannot give rise to individual migration into food of any of them resulting in their presence in food exceeding 0.00015 mg/kg.

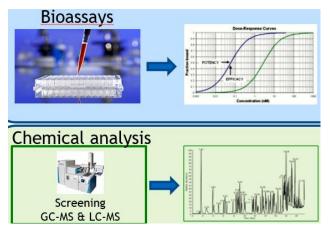
Challenges

- Safety is insufficiently defined at EU/Worldwide level for most FCMs (lack of harmonisation)
- No capacity for risk assessment and management of all FCM substances.
- Lack of priority on most hazardous substances; the use of certain chemicals is increasingly no longer accepted
- Safety of migrating substances is not transparent
- Public authorities have insufficient capacity to comprehensively enforce compliance and safety in accordance with current rules
- Environmental challenges call for more sustainable production and use.
- New products are entering the market that challenge present categories
- No harmonized analytical test methods, especially for screening

Residues and Contaminants Control



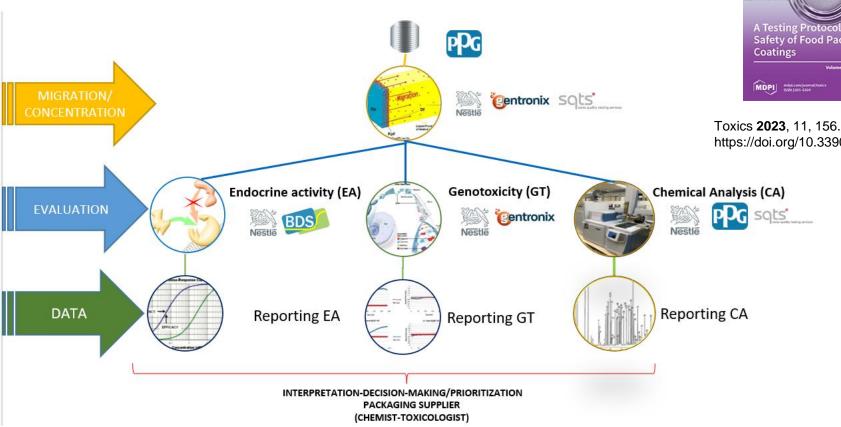
Target Testing versus Non-Target Testing


- Target:
 - limitation of the target analysis technique is in terms of the number and variety of compounds for which qualitative as well quantitative analysis can be achieved
- Non-Target:
 - Non-target screening is useful for screening and identifying compounds that have not yet been discovered

Chemical versus Biological Testing

A contrast or complementary?

https://nontargetedanalysis.org/reference-content/methods/study-design/


Toxics **2023**, 11, 156. https://doi.org/10.3390/toxics11020156

A Comparison

Workflow of Interlaboratory Study

https://doi.org/10.3390/toxics11020156

Chemical Analysis

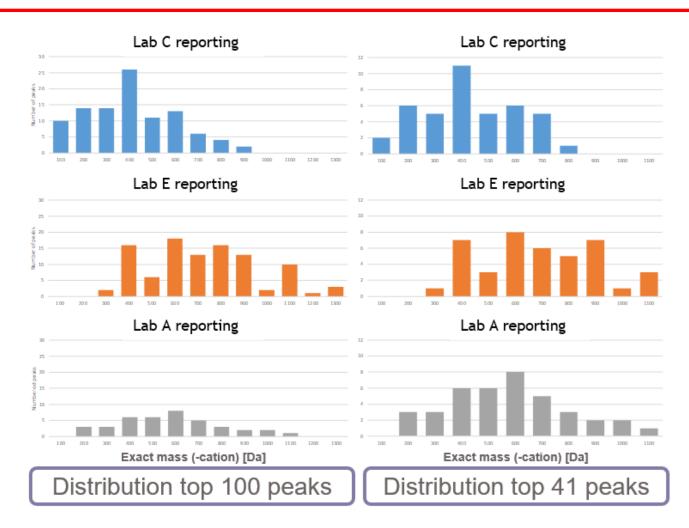
GC-MS

- Different instruments and methods between labs.
- EI
- 12 main peaks (highest areas) reported without identification of the chemicals.

LC-MS

- Different instruments and methods between labs.
- ESI positive mode
- 100 main peaks (highest areas) reported without identification of the chemicals.

LC-MS DATA

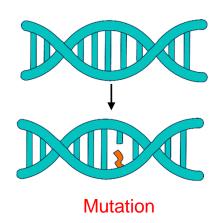


Lab C 100 peaks 89 distinct peaks*

Lab E 109 peaks 72 distinct peaks*

Lab A 41 peaks 38 distinct peaks*

*Distinct peaks: Difference on exact mass (-cation) > 0.05 Da



Not all genotoxic substances are critical at very low doses

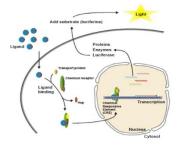
1. Direct-DNA reactive / mutagen: direct changes in the DNA sequence

- Tolerated intake very low
- (0.15 µg/day for 60 kg person)
- Detection: Ames test (bacteriabased)

- 2. Clastogens/Aneugens: indirect DNA damage at the chromosomal level
- Clastogens: chromosome breakage (Deletion, Insertion, Chromosome rearrangement)

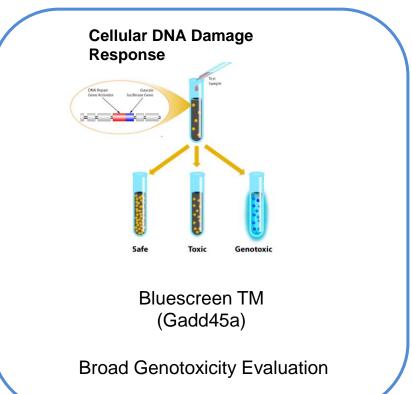
Aneugens: disrupt cell division/mitotic
 spindlε

- A safe threshold can be set up
- Covered by Cramer Class III
- Undetectable with bacteriabased tests



Bioassays Analysis

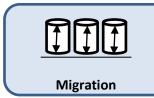
ENDOCRINE ACTIVITY

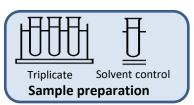

Transcription activation CALUX bioassays:
Receptor mediated Chemically Activated
LUciferase eXpression

CALUX cell lines to assess activation or inhibition:

Estrogen Receptor Androgen Receptor

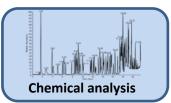
GENOTOXICITY

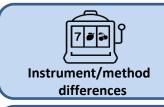


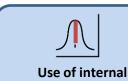


Overall Interlab Study Conclusions

The interlab study allowed to identify critical steps for Best Practices Framework



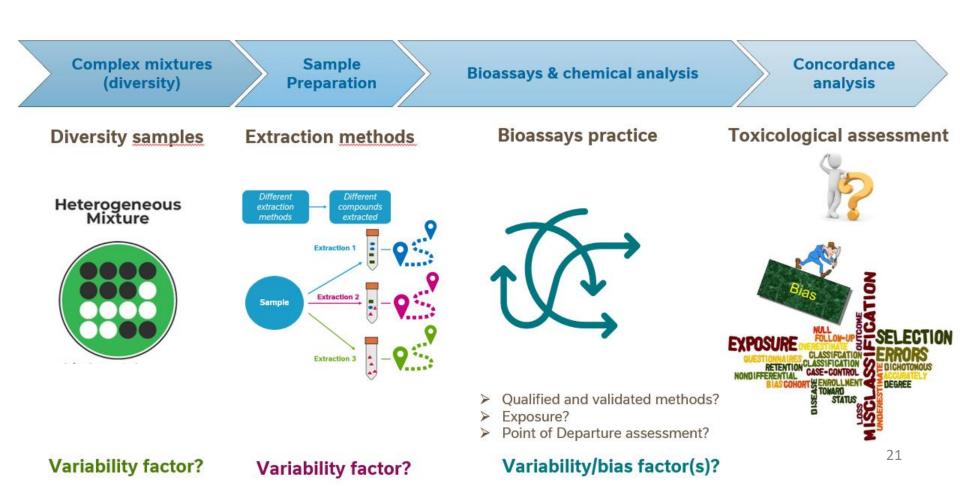




Harmonization of protocols with detailed precision of conditions are needed

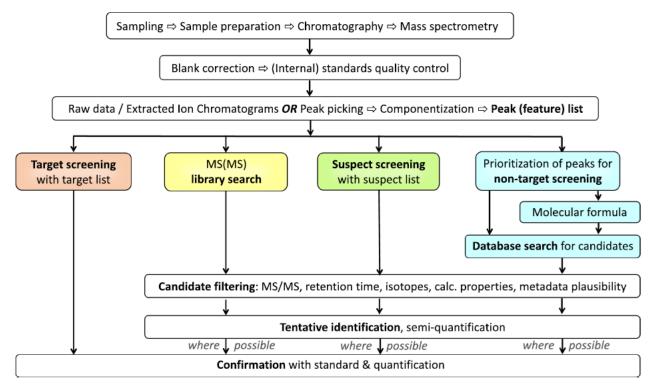
Skilled laboratories for packaging safety assessment of IAS and NIAS has been identified as crucial to reduce laboratory variability and to improve concordance.

"Different methodologies can give different results and it can be difficult to make meaningful comparisons".


Guidance in selecting analytical techniques for identification and quantification of nonintentionally added substances (NIAS) in food contact materials (FCMS)

Harmonisation Activities

Bioassays: 4 working groups within AOAC Europe Section are formed to achieve a "Broader harmonization at each stage to reduce bias/misinterpretation?!"



Harmonisation Activities

Screenings: working groups covering environment, food, food contact materials, metabolomics and forensic within AOAC Europe Section are formed to achieve a "Broader harmonization at each stage to reduce bias/misinterpretation?!"

To be presented

138th Annual Meeting August 23-28, 2024 Baltimore, MD

- Report out to and engagement with the AOAC INTERNATIONAL annual meeting attendees
- Possibility of having a scientific session focused on bioassays

11th International Symposium on Recent Advances in Food Analysis

November 5-8, 2024; Prague, Czech Republic

- Report out during the AOAC INTERNATIONAL session at 2024 RAFA
- Possibility of having a face-to-face AOAC Europe Section meeting